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Fatigue Life Prediction by Statistical Approach Under Constant 
Amplitude Loading 

O u k  S u b  L e e *  

(Received April /7, 1997) 

In general, the experimental data of fatigue crack growth rates scatter very much even under 

identical experimental condition such as a constant amplitude loading condition. It is, thus, 

essential to take into account the data scatter of crack growth rates by using statistical approach 

for a reliable fatigue crack propagation analysis. In this study, fatigue crack propagation tests 

were conducted on a 1.02 ram-thick 2024-T3 aluminum alloy under a constant amplitude 

loading condition. The distribution of the fatigue crack propagation life is estimated by using 

the stochastic Markov chain model based on a modified Paris-Erdogan equation to consider the 

wariability of the fatigue crack growth. The fatigue lives estimated by using the Markov chain 

model are found to be agreed well with the experimental results. 
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I .  I n t r o d u c t i o n  

Since the large transportation mechanical struc- 

tures such as ships and airplanes are generally 

operated under random variable loading condi- 

tions, the fatigue damage analysis is essential to 

provide the proper technical information in con- 

structing the reliable and integrated ones. It is of 

noticeable that these structures consist mostly of 

very thin engineering materials comparing to 

other heavy structures such as the nuclear power 

pressure vessel. Therefore, it seems to be impor- 

tant to find out the precise fatigue crack growth 

behavior in very thin engineering materials, it is 

also necessary to generate the data-base from 

experiments on fatigue crack growth behavior of 

very thin specimens under varying constant ampli- 

tude loading conditions. One may utilize these 

data-bases for the analysis of structures under the 

random variable loading conditions. The varia- 

bility of  fatigue crack growth rate even under 

identical environmental condition needs a statisti- 
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cal model. Generally, the following three sources 

of  variability in experimentally obtained fatigue 

crack growth data are commonly regarded as the 

most decisive (Sobczyk and Spencer, 1992): (1) 

the difference in material behavior among identi- 

cally prepared specimens (due to difference in 

stress concentration at grain boundaries, effects of 

thermal processing, etc); (2) uncertainty in the 

fatigue and fracture process itself; (3) difference 

in environment among tests at the same load 

condition and with the same materials. 

There are, in particular, two ways to consider 

and to estimate the variability of the', fatigue crack 

growth. One is the estimation of crack growth life 

distribution from the Par is-Erdogan differential 

equation model in which we treated material 

constants, C, mas the random variables (Ishikawa 

and Tsurui, 1987). The other is the Markov chain 

model that is proposed by Bogdanoff-Kozin 

(1981, 1983), Kim and Kim (1995), and Kim and 

Shim (1996) as an example of tile evolutionary 

probabil ist ic approach. In this study, we used the 
Markov chain model based on a modified Paris- 

Erdogan equation to combine the two technical 

methodologies together. 
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A modified Pa r i s -Erdogan  equat ion  (Euw, 

Hertzberg and Roberts,  1972) used in this study is 

da  C (A/(ej7) m ( l )  
(t,~,, r 

da . fatigue crack growth rate where, d N  

C, m : random variables 

min. stress 
R " stress ratio max. s t ress /  

Note  that 0 . 5 + 0 . 4 R  (where -0 .1<_R<_0 .7)  is 

used to consider  crack closure effect which com- 

monly encountered in thin materials. 

The principal purpose of  this paper is, thus, to 

find an appropr ia te  stochastic model  and to eval- 

uate reliabili ty of  this model for the fatigue crack 

growth analysis of  a thin 2024-T3 a luminum 

alloy. 

2 .  B a c k g r o u n d  

Bogdonoff  and Kozin (1985) used the Markov  

chain model  so as to analyze statistically the 

fatigue cumulat ive  damage process. They defined 

a duty cycle (DC) to be a repetitive period of  

operat ion in the life of  a component  during which 

damage can accumulate.  They made the fol lowing 

assumptions : 

1. Damage states are discrete and labeled j - - l ,  

2, -.., b 
where, state b denotes replacement, or fail- 

ure. 

2. Increment in damage at the end of  a DC 

depends in a probabil is t ic  manner  only on 

the amount  of  damage present at the start of  

the DC, on that DC itself, and is independent  

of  how damage is accumulated up to the start 

of  that DC. 

3. Damage  can only increase in a DC from the 

state occupied at the start of  that DC to the 

state one unit higher. 

If we define that pj  is the probabil i ty  of  remain- 

ing in state j during one step and qj is the 

probabil i ty  that in one step damage goes from 

state j to state j4-  1: 

p~=Prob{remain  in state J l initially in state j} 

q j = P r o b { g o  to state j +  I I initially in state j}. 

The (1 • b) row vector 

p0={Zr l ,  e r ~ , - . . ,  er6-~, 0} 

specifies the initial distr ibution of  damage. 

Where,  er~ Prob{damage is in state j at time x 
b-1 

0}, and 32, a~ 1, Z b =  0. The  a s s u m p t i o n  
1 

that, 7Cb 0, means that no component  is in the 

failed state b initially. For  the simple version of  

this model,  the DC severity is defined by the 

fo l lowing (b x b) probabil i ty  transition matrix. 

Pl ql 0 0 . . . . . . . . .  0 0 

0 /)2 q2 0 . . . . . . . . .  0 0 

0 0 Pa qa . . . . . . . . .  0 0 

0 0 P4 q4 . . . . . . . . .  0 0 

P ~ i i i : : 

~ i ! : : 
0 0 0 0 . . . . . . . . .  ])b 1 q b - 1  

0 0 0 0 . . . . . . . . .  0 1 

where, pj>-O, p j + q j = l  

In this matrix, note that all states are transient 

except for the last which is absorbing. The proba- 

bility of  being in state j at the time x is given by 

the (1 x b) row vector. 

px {px(1), p.,-(2), px(3) ,  "- ,  px(b)} 

where, Px(j) --Prob{damage is in state j at time 

x} 
b 

~ P x ( j ) = l ,  P x ( j ) ) O  
1 

We then have Markov property, 

Px PoP* (2) 

For  the fatigue cumulat ive damage, however,  

the  M a r k o v  cha in  m o d e l  o f  B o g d a n o f f  and 

K o z i n  is based s i m p l y  on the p r o b a b i l i s t i c  

process. There fore ,  the mode l  is not  de f in i t e  

physical meaning of  fatigue damage. Because of  

this reason, the crack growth law of the Paris-  

Erdogan is imported and its weakness can be 

made up for. In the Markov chain model, it is 

assumed that crack length c~a increases by stage. 

Therefore,  damage state j defines as 

aj=ao+jSa,  j O, 1, 2, "", b (3) 
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where, aj is crack length in state j (mm), and 

a0 is initial crack length (mm). 
The probability of going to next state, qj, can 

be defined as stress intensity factor function. 

q.s = q (AKj) (4) 

In this approach, transient probability qj (here, 

we assume Cl.s are independent of each loading 

step) can be obtained by using a modified Paris 

Erdogan equation. The modified Paris Erdogan 

equation is 

Table 1 Chemical composition of 2024-T3 A1 alloy 

(wt %). 

Si ~_(~e Cu M n T - M g ~ ' r ~ - , n  ~ Ti 

0 . , ,  :E ,44 oo4 _ _ _  0.0_:fl 0.02_ 

Table 2 Mechanical properties of 2024-T3 A1 alloy. 

Yield strength 

(MPa) 

324 

Tensile strength T ........ o-- .... 
(MPa) l El~176 (/~ 

442 1 .............. 7 1 6 7 /  ......... 

da 
d N -  C (AKexr) m (5) 

It is assumed that m and C are random vari- 

ables. However, they are considered to be contant 

for a single specimen but to show the dependency 

on ee.ch specimen. Eq. (5) may be rewritten in 

terms of advanced incremental crack length (3<, 

and raean value of duty cycle L [o;~] 

8a 
E [&V] = C (AK) ~o-) " (6) 

where, E[variable] indicates mean wdue of 

variable. 

Crack does not propagate during duty cycles 

((?J~--l). But if a~r-th cycle acts, then crack 

would propagate, and that probability is q. 

Therefore probability distribution of 0N is 

P [ & V  =: & l  ~. /~,,,. (&~) = <t//" ~ (7) 

Mean and variance of duty cycle number are 

the first order and the second order moments as 
follows, respecti,,ely : 

8~ = 0 3 ) l  = (1 

! (8) 
q 

Va'<L ~N] = / ;  (&;'-'] - ( E L A N ] ,  q~ (.9) 

Using Eqs. (6), (7), and (8), the fo l lowing 
transient probabi l i ty q, which considers scatter of  
fatigue crack growth behavior is obtained as 

follows : 

q= C" (~Keff) ~ (10) 
O N  " 

I h i c k n e s s  = t 0 t g n l m  ( u n i t  n i i n )  

{ I{{I 5 lh .~  

Fig. Geometry of specimen. 

3. Experiment 

3.1 Specimen and experimental method 
The material used was 2024--T3 At alloy plates 

of I. 02 mm thickness. Its chen~ical composition 

arid mechanical property are shown in Fable I 

arid in Fable 2, respectively. 

The geometry of specimen is C( 'T  (Center 

Cracked Tension) as shown in Fig. t. Tbe longi- 

tudinal direction of the specimen coincides with 

the rolling direction of the material. All fatigue 

crack growlh tests were carried otll under axial 

loading using a serw) hydral,llic lesiing machine 

o[ I()ton capacity. The repealing fiequency was 

10 ttz. The stress range was AeT::::58.8MPa, and 

the mean stress was (7,,,:~ 39.2MPa. tlence the 

stress ralio was N 0.25. The temperature of the 

specimen was room temperature. Crack growth 

was monitored using a traveling microscope, it 

can measure with accuracy of 0.0lmm. The crack 

length was measured at the two tip:~ of the crack 

on both sides of the specimen. The time interval 

of the measurement was 5000 cycles at the early 

stage of fatigue crack propagation period. The 

time intervals were reduced tremendously at the 

final stage of fatigue crack propagation to 

decrease measurenlent error of crack length. 
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Twenty five specimens were tested under identical 

experimental conditions. 

4. Experimental Results and 
Discussion 

4.1 Fatigue crack growth under constant 
amplitude loading 

The crack lengths (a) are plotted against the 

number of cycles (N) in Fig. 2. Measurements 

were started at different initial crack lengths and 

the corresponding fatigue crack growth data were 

interpolated to adjust all curves with identical 

initial crack length of a0=7 ram. 

The relation between the crack growth rate, 

d~ and the effective stress intensity factor range, 
dN'  

da AK~sj-, is shown in Fig. 3. ~ was evaluated as 

2 5 -  

2 0 -  

10- 

O 
O 

o 0 8  o V  

o o o o 
8 B o 

oo~  ! ~  o 
~ 1 7 6 1 6 7  8 

,,  jlli "" 
- ' ' ' , I ~ , 0ix~ 0,~ 0,0 5.0x10 1. 

N u m b e r  o f  c y c l e s ,  N 

Fig. 2 

o 
8 

o 

Crack length plotted against the number of 
1 repeat cycles in AI 2024, R 4 

da a i+l -a ,  (11) 
dN Ni+l -  Ni 

where, N~ and N~+~ are the number of cycles at 

which ith and ( i +  1)th measurements were made, 

respectively, and a~ and a~+~ are the values of 

crack lengths at N = N ~  and N=N,+~,  respective- 

ly. z/K~ss was evaluated as 

AK~II = UAKapp 

where, AKess is the effective stress intensity factor 

range, 

zJ/rs is the applied stress intensity factor 

range, 

U is the crack closure parameter, and 

W is the specimen width. 

Elber showed empirically for 2024-T3 AI alloy 

that 

U = 0 . 5 + 0 . 4 A  ' (13) 

where, R is the ratio of the mininum load to the 

maximum load. 0.1 <~R<0.7 

Substituting Eqs. (12) and (13) into Paris 

-Erdogan equation, it is possible to correlate 

crack growth rates with effective stress intensity 

factor range for different stress values as follows : 

da C (,dK~z/) " 
aN  

=C[(0 .5+0 .4R)A~ ~ra �9 sec W- 

The modified Paris Erdogan equation was 

applied to the data points of each specimen using 

the method of least squares. It is assumed that m 

I ( l  ~ 

i{i 7 

Fig. 3 

oO ~ 

O O 

A K  elf ( M P a  m 1'2 ) 

Relationship between fatigue crack growth 

rate and stress intensity factor range, R 1 
4 

10-m. 

Fig. 4 

~ ' ~  I ] o g C  = - 0 . 8 8 6 4 2 m  - 6 . 8 0 2 5 6 l  

- \ .  
, - 4  

R = 1/4 x '"  ~ 
" \ ~ . . . .  

2's 3o 3'.5 4 o 

I l l  

Correlation between m and log C by using 

effective AK~,j~, I('=--4 I--. 
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and log C are random variables since the speci- ~o 

men-to-specimen variability of m and log C 

were clearly shown from experimental investiga- 08 

tion. They both show approximately normal 
distributions. 0.6 

Figure 4 shows the correlation between rn and 
04 

log C. It is seen that a strong negative correlation 

exists between rn and log C. Therefore, if m (or 0.2 

log C) is generated as random variables by fol- 

lowing normal distribution, then we could obtain 0.0 

values of rn and log C to take account their 

strong negative correlation. Fig. 5 

4.2 F a t i g u e  l i f e  e s t i m a t i o n  

Ttle two-parameter Weibull distribution such 

as Eq. (I 5) is known to fit fatigue crack propaga- 

tion experimental data quite well (Sobczyk and 

Spencer, 1992, Bogdanoff and Kozin, 1985). 

where 0 and ~ are functions of random vari- 

ables m and C whose correlation is shown in Fig. 

4. Markov chain model was constructed such that 

duty cycles are 1000 cycles and 8a=0.2 ram. 

Figure 5 shows the edf (empirical distribute func- 

tion) of the cycle number to reach a = l  I mm, and 

the corresponding estimated result obtained from 

the proposed model which combines the Markov 

chain model and the modified Paris-Erdogan 

equation where C and m are random variables. 

Figure 6 shows the edf and estimated result at a 

=17 mm. The agreement between edf and esti- 

mated result seems to be excellent. 

Figure 7 shows the comparison between edf's 

I 
and estimated results of under R = - - 2 0  a n d / ?  = 

1 loading conditions. The agreements between 
2 

edrs and estimated results seem to be excellent 

even under different loading conditions such as /?  

1 I 
- : 2 0  and R = ~ - .  The reliable Fatigue life 

prediction may be obtained by using the proposed 

model in this study. 
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Fig. 6 
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Fig. 7 
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5. Conclusion 

In this study, a stochastic Markov chain model 

is proposed to predict distribution of fatigue 

crack propagation lives of mechanical structural 

components under the constant amplitude loading 

conditions. The fatigue crack propagation tests 

were conducted and data scatter of fatigue crack 

propagation was considered by using a statistical 

model. Random variables m and C in a modified 

Paris--Erdogan model are imported to the statisti- 

cal model. The transient probability, q, that con- 

siders (models) scatter of fatigue crack growth in 

terms of random variables C" and m is modeled as 

q C (JK~<,-) 7tl 

O ( g  

In this equation, note that z/t(~,~ includes the 

effect of stress ratio. The distribution of <~tigue 

crack propagation lives under the constant ampli- 

tude load conditions are estimated by using a 

stochastic Markov chain model based on a 

modified Paris Erdogan equation. As a conse- 

quence, results of experiment and those estimated 

by using the modified Paris Erdogan model are 

tound to be agreed very well. 
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